Wheatstone Corporation
Technical Documentation

GP-16P Configuration Tool
Programming Guide

* Programming Button Functions with the Script Wizard
» Creating Custom Scripts with the Script Editor

WV Vheat rtone Coreoration
600 Industrial Drive
New Bern, NC 28562
252.638.7000
www.wheatstone.com

Revision 1.1 — January 2008
Paul Picard

Table of Contents

1 Introduction
1.1 GP-xx Hardware CompatiDilityucecamuiiiiiiiieiiiiiieie e 3

2 What You Need to Get Started

2.1 GP-16P Configuration TOOI SOftWArecccceciiiiiiiiiieeieee e e e e e 4
2.2 Physical Network Connection
2.3 IP Address Settings

2.4 XPoint Softwarecccuvveeenn.

2.5 GP-16P HEIP Il ittt e e e e e e e e e e s s e s e st e e e e e e e e e aaaeaaaeasesaaeannnnnns

3 Using GP-16P Configuration Tool Software

3.1 Programming ProCedure SUMMAIYcccceeeerrriiirieeeeeeessasisssseunnrnnsnseeeereeseeeessessnnannnsnns 6

3.2 AAAING DEVICES ...cetiiiiiiieaeee it ettt ettt e et e e e e e e e aeeaa e e s s bnbbetbe e b e e eeeeaeaaaaaaaaens 6
3.3 TOQIE ON-LINE MOUEeuiiiiiiiiiiit ettt ettt et e e e e e e e e e e e e e e e nnneeeeeeeeee s 6
3.4 Create a New SCrIPt File ... a e e e 7
3.5 Script Wizard BUtton FUNCLIONS et e e 8

3.6 COMPIIE T SCHPL ...ttt e e e e e e e et e e e e e e e aaaaaaeaens 9
3.7 Starting the SCIPL .eveeiiiiiiiii e eeeee et e e e e et e e aaeeeeaeesssaasannnnnnrrnne 9
S T = 11T PSR 9
3.9 Reviewing the Script Wizard COUEoociieiee i 10

4 Configuring Device Properties

4.1 Surface ConfIQUIAtioNociiiiiiiiieeeee e e e e
4.2 Starting the DeVvice PropertieS DIalOQ .« rrrrrrrrrrriiirieeeeaeasiesiisssisnnneneeereeeraaaaeeessesnnn
4.3 LIO Configurationccccccevvevieimmmmnennnn.
4.4 Starting the Device Properties Dialog ...
4.5 DesSign PhilOSOPNYuuiiiiiiiiiiiii ittt e e et e e e e e aaaaaeeeas

5 LIO Example Using Device Properties

5.1 Configure the Source Signal in XPOINt ..occooiiiiiiiiiiiiiii e 14
5.2 Configure the GP-16P LIOSui ettt et a e e e e e e e e e e e e s enneaes 15
5.3 Create the Mic Control Script Using SCHPt ARoooovriiiiiiiiiiii e 17

5.4 Reviewing the Script Wizard COUE ... 18
5.5. Beyond the SCript WIZardeeiiiiieeiiiieiiiie e e e e e e e e e e e e e e ennnnaannreneeees 19

6 What is the Script Editor?

6.1 SCript EItOr FEALUIESceeiiiiiieeeeeeiiiiiteiee e e e et e e e e e e e e s e s s s s ss e e e e e e e e aaaaaaaeeasesaasannnnnns 20
6.2 Third Party EQItOrSuuueiiiiiiisimmmme e e e e s ettt e e e e e e eeeeeaesssssnsannb e s e e eeeeereeeaaaaeaeeeas 21

7 Creating Custom Scripts

7.1 Getting the EXample File ...
7.2 EXGMPIE SCIPE DESIGN ...ueiiiiiiiiiiiiieeaaaeiiitiete ettt e e et e e e e e e e e e e e e e s e s s aasb e e ee e e e e eeaaaaaaaaaaaaaaaaanan
7.3 Auto-generated Script Components
7.4 Custom Start UP SUDIOULINE........cooi ittt e e e e e e e e e e e e as
7.5 EXample SCrPt SLIUCLUIE ... eeeeee ettt e e e e e e e e st e e e e e e e e aaaaaaaaaaaaaan
7.6 Example Script —Variables and CONSIANTS. .ccceeereeieeeeiiiiiii e e e e 25
7.7 Example Script — SUBIOULINES ... coeeeeeiiiiec e e e neees 27
7.8 EXample SCript — ACHONS ..o ceeeee et r e e e e e e e e e 28
7.9 Custom Scripting SUGQESTIONSueeeiieiieiiiiiieereere e e e e e e e s e s sss s rerrereeeaeeeeeeessesenannnnnnnns 29

Table of Contents (continued)

7.10 Scripting ROULET CONLIOIooiiiiii ettt e e e 29
7.11 Scripting SUrface CONIOLooiiii it 29
7.12 BasSiC SUIMface fUNCLIONSoiii ettt e e e e e e e e e e e e e et e e e e e e aaaaaaaaaaaaaaan 29
7.13 Advanced Surface FUNCLIONS ... e e e e e e eeeee e 30
7.14 Example surf_talk COMMENTASuuueiiiiiiiiiiiiee et a e 30

8 GP16P Scripting Language Overview

8.1 CASE SENSILIVILY .iiiiiiiiiiiie ettt e et e e e e e e e e e e e e b e e e e e et e e et e e e e e e e e e e e e e e aa e nnnaarraee
S JZ 01 0] 11T o £ PN
TG T Yo i (o] PR OPP OO
8.4 GlODAl VArIADIEScooeiiiiiiitie e et e ettt e e e e e e e e e e e e e e e e et e e e e e aeaeeeaearaaa
8.5 Local & Static Local Variables
I G 10 1] = 1 TSP
G T Y ¢ =\ T

9 GP16P Scripting Language Structure

9.1 SCHIPL STIUCTUIE ...ttt et oottt ettt ettt e e e e e aaaeeaeaaaannnnbbebbssbeeeeeeeeaaaaaaaaaaaeaaannn 33
9.2 CoNnStant DECIATALIONSc.uuuiiiiii ottt et e e et e e e e et e e e e e ettt e e e e e et e eeseesanaeaees 33
9.3 Global Variable DeClarationNscceeeiiiiiiiiiiiiiie ettt e eaaans 33
9.4 Global Array DECIArAtiONSeii i eeeeetee e e e et e e e e e e e e e e e e e e e e e annneeeeeeeeeees 34
9.5 Local & Static Local Variable DeClarationNS. ceu....c.cuvueieeiiiiiieeeeeie e ee e 34
9.6 ACHON BOGIESceovviiiiiiiiieii e eeeeeeiice et e e e e e e e e ettt e e e e e e e e e e e e e e eeeeeeas st aeseeaeeaeeeeeeeeseeranas 34
9.7 ACHON PAlAMELEIS ...ceevvviviiieee s e e e e e e et et eeeta b eeaeeseeeeeeeeeeessaessaba b seeseeeeesesessrssrarannnns 35
9.8 SUDIOULING BOGIES ..uvuiiiiiiiiiiiieeeeeeeeeee ettt et e e e et e e e e e e e e e e e e e eeasbbaraannns 35
9.9 SUDIOULING PAramMELEISccoeieie ettt e e e e e e e e e e e e e et aa et aaeaeeeseeeeeseeesessabara e eeaeens 35

10 Script Debugging

0 T o [T aTo TR @] 4 g o1 =Tl i g (o] £
10.2 Third Party EAItorsccceeeeeee i
10.3 Using “Print” and Telnet t0 DEDUQG ... eiiieieaaeeei e

Appendix A
Al - Example Custom Script File — INterloCK16.SS . cc..evvveeiiiiiiiiiiiieeeeeee e 40

1 Introduction

This document will guide you through the procesprofgramming a GP-8 or GP-16 panel using
the GP-16P Configuration Tool software. This pridecument is aimed at familiarizing you
with the software’s fundamentals and quickly gettyour GP-xx panel up and running using the
point and click Script Wizard. The Script Wizardlveiutomatically generate computer code
based on your Button and Parameter selections.cbdis can be compiled and downloaded right
to your device from within the configuration tool.

Certain sections of this document use materialtémtan the GP-16P Configuration Tool
software’s extensive Help file.

1.1 - GP-xx Hardware Compatibility

The GP-8 and GP-16 are eight and sixteen buttaiores of the panel and use an identical
hardware platform. Scripts written for an 8 or 16tbn version will run on either one with the
obvious limitations stemming from the surplus aklaf buttons on the two panels.

2 What You Need to Get Started

Before you get started programming let’s reviewoaltihe miscellaneous software and connection
issues.

2.1 - GP-16P Configuration Tool Software

Make sure you have installed the GP-16P Configumaliool software that came with your
product’s install CD-ROM. If you do not have a coplease contact Wheatstone Technical
Support at 252-638-7000 and we will email or FT#® iyou.

This document uses screen shots from version Bui.the general process will apply to earlier
versions.

2.2 - Physical Network Connection
Editing of GP-xx devices requires a 100BTX Ethegwinection to the device. There are two
ways to connect:

100 BASETX LANhe GP-xx device and PC are connected to a cord@OBTX Ethernet
switch or hub typically with straight wired RJ-4abtes. This is the preferred method.

Peer to Peer a simple cross-over wired RJ-45 cable betweerPth and device. Note that when
the GP-xx device is power cycled Windows momentdaises the network connection and takes
a moment to recover.

2.3 - IP Address Settings
Make sure your PC is configured to talk to the GRranel. The following rules apply:

* The device’s IP address is printed on a label edfito the GP-xx panel .The default
factory IP address for GP devices starts at 19211531 with a subnet mask of
255.255.255.0.

* The PC running the GP-16 Configuration ToMUST be on the SAME subneias the
GP-xx device.

* For example if your GP-xx IP address is 192.1621 then the NIC's IP address must
be given a unique IP address on the 192.168.1 xiymed.

* WsNetServer softwares used to assign unique static IP addresses tox@@nels.

Important:
GP-xx IP addresses are assigned and changed using

WsNetServesoftware.
Please refer to the WsNetServer documentation foredails onchanginga GP
panel’s IP address.

2.4 -XPoint Software

The GP-xx panels may be programmed to control aaiiblogic signal cross-points, fire Salvos,
activate surface presets, and other functions. GPel6 Configuration Tool may require you to
enter Source and Destination signal ID’s, Salvexas, and other numerical data based on ID

numbers generated in XPoint. You will need accesbd XPoint software and your system’s
configuration to get the required information.

2.5 - GP-16P Help File

The GP-16P Configuration Tool software has an esxter\Windows Help Menu system. You
will definitely want to utilize this asset whileggramming as it can be an invaluable aid,
especially when creating custom scripts.

= Help

¢ &
Hide Back Print DOptions

Cantents]Iﬂdex 1§earch1

= ([MIGP-1BP GUI Operation
@ File Menu
[2] view Menu
[2] Build Menu
{2] Device Menu %
@ Help kenu
= @ GP-16P Panel Operation
= (1 GP-16F Device Setup
|ﬂ Device Definition
@ Surface Configuration
[7] LIO Configuration
@ uo Example
= (@ ScriptWizard
[7] Buttor Propetties
@ Startup Action Hook
[Script Compile & Download
=] Q Script Editor
@ GP16P Scripting Language

=l | B

Wheatstone GP-16P Configuration Tool

The GP-16P Configuration Tool (or GUI) allows you to easily

develop a uniquely customized button panel for your live broadcast

or production studios. The flexibility of your GP-16P button panel

comes about due to an architecture based on a virtual machine in =5
the button panel microprocessor which very efficiently executes
compiled bytecade. This GUI provides you a mechanism to develop

your unique button panel application.

You have access through this GUI to a point and click Script Wizard
which provides selection of typical functions for each button of vour
button panel. When the typical functions built into the Srcipt
Wizard fall short of your imagination, this GUI provides you with an
editor in which vou can write custom scripts in a programming
language somewhat like 3 cross between the C and Basic
programming languages. You do not need to be a computer
programmer to modify vour button panel application, since most
functions can be performed through the Script Wizard. When (if)
vou wish to take the leap to a custom script, an introductory level
of programming experience is all which is required to manually
write custom scripts.

Main Window

Maost of the main window of the GP-16F GUI is made up of an

output window. The output window displavs status, warnings and

error messages during execution. The title bar of the main window
shows a lot of information also. Besides the application name, the

title bar shows the name of the active GP-16P device, the online =

3 Using GP-16P Configuration Tool Software

OK, now that we have the network connection is$aksn care of we can start the GP-16P
Configuration Tool software and program the paogddrform some basic functions using the
Script Wizard. The general procedure we will fall listed below.

3.1 - Programming Procedure Summary
The steps required to program your GP-xx devicdisted below - let's review them and then

perform each in turn.

* Add the Device info to the GP-16P Software Tool
» Connect to the Device in Online Mode

» Create a New Script File

» Use Script Wizard to map functions to buttons

» Compile Script and Download to Device

e Start Script on the Device

e Test Functionality

If you haven'’t already done so, start the GP-16Rfigaration Tool Software

3.2 - Adding Devices

If you previously ran the software, use the | GP-16P Device Setup

Menu itemDevice->Devices. .to Add or

Selectyour GP-xx.

Marme: |r‘-"|.'r'|3 Fa

Note: If this is the first time you started the| IPAddress: | 192 . 168 . 1 . 22

software or there are no GP devices saved,
the first prompt window you will see asks
for a Device Name and IP address. Go

)4

Caricel

Help

ahead and enter this information.

3.3 — Toggle On-Line Mode

Click the menu choicBevice>On-Line Mode
Check that you are (On Line — Connected) in topité Bar.

File Wiew Buld Device Hep

BEPESES Cwmes
——————————— MyGFE-2

Devices... Ctr+D
Properties.., Ciri+P
Print Properties...

v On-Line Made:

Version..,
| Upgrade Software...

;fi&"m 7

Note: Certain
circumstances may
cause the software an
the GP panel to be ou

of “sync”.
“On Line-Connected”
reported when in fact
you are not connected.
When in doubt simply
toggle On Line mode
OFF and ON.

3.4 - Create a New Script File

Select the Menu iterile->New and theScript Wizardopens automatically, once you have
specified a file name for the new script.

TheButtonslist in the scroll pane on left side of the Wizédvhere you select which GP panel
button you would like to program. Simply click dretbutton name to select it.

The right side of the Wizard is where you selefttrection for the selected button. Go ahead and
click through the various Functions. You will na@ithat the Parameters field will display various
data entry fields depending on the function seted®arameters are usually integers that
correspond to signal ID numbers or Salvos as caorditjin the XPoint software.

Script Wizard - Test Some functions.ss
=& Buttons |# | @ Button 1
; —
:-®BUth:IH1 ..F t. . - .P t e
& Button 2 unchoR; aral.'ne n.ars.
i @ Bution =2 Mone HCustom Drestination: JH
gg:a Button 4 " Fire Salvo e J119
545 Buthon 5 T Momentan HrC %
.15 Buthon & % Connect 37T
6 Buthon 7 i T Momentany LID
-6 Button 8 Taggle LIO
: <5 Button 9 ¢ TalyLig
i @ BUtn 20 {° Surface Preset
%5 Button 11
L LS D e 10 _I__V__E
Sl 18|
] | Cancel Help

3.5 - Script Wizard Button Functions

The following functions may be mapped in any corabon to the GP-xx buttons. Note
that in some cases a button may perform actiorimtnthe Press and Release of the
switch. The Help file includes details; goGontents>Script Wizard>Button Properties
for more information.

Function Summary
None/Custom- select this if you are not using the button drwrite a custom script for the
button.

Fire Salvo—select this to fire a Salvo created in XPointteEthe Salvo’s Index number in the
Press and Release Parameters fields. Salvos ateatia XPoint and are simply a stored set of
one or more routes and/or disconnects. The finsioSa the XPoint Salvo list is index 1, second
in the list is 2, etc. You can have a differentvBdire on both the Press and the Release of the
switch. Use this function when you need multiplatghes” to happen simultaneously, like
switching speaker and HP feeds to a shared tadkostu

Momentary XYC- XYC stands for X-Y Crosspoint- this option issdsto momentarily interrupt
a destination with a new source. Useful for talkbacEAS, the interrupted Destination reverts
back to previous Source. Enter the Destination@marce signal ID numbers from your XPoint
configuration. Just mouse over the signal nameRoiAt to get its number

Connect XYGC- this function will make a one time X-Y Crosspgaioute. Enter the Destination
and Source signal ID numbers from your XPoint agunfation.

Momentary LIO—this function will trigger a logic connection Olhis function requires
mapping of the LIO irDevice>Properties see Section 4 or Help File for specific details.

Toggle LIO— this function with toggle the LIO state ON/OFEmweach press of the button. This
function requires mapping of the LIO Device>Properties- see section 4 or Help for specific
details.

Tally LIO — not available at this time — future: use thitutm the button into an indicator lamp.
The LED in the button will light when the logic adition is met.

Surface Preset use this to take a Preset on a Wheatstone tentiface. You need to specify
two parameters for this function:
Surf: - is the surface ID specified in tBevice-> Propertiesorm. Surface ID numbers
are mapped to the GP-xx panel using the menu chmeee->Properties...Enter an IP
addresses for each surface the panel needs totdtktering 1 for th&urf: parameter
will cause a button to talk to IP address assodiafieh Surface 1:in the list.

Preset -this parameter is case sensitive - Name of thed®? located on the surface.
Some surfaces like the G4 have only push buttansdex numbers 1-4 map directly to
the buttons.

3.6 - Compile the Script

Once you have mapped functions to the buttons y@ueady to compile the auto-generated
Script Wizard code and download it to the GP-xxgbafio compile, select thHRuild-> Compile
and Download menu choice.

If successful you will see the following feedbacktbe screen.

File “iew Build Device Help

LEHE KO SnPd &wt

wheatstone Programmable Panel Compiler "wsgppc’ wersion 0.2.0

Copyright 2005, Wheatstone Corp, All rights reserwved.

Compiling: C:“Program Files‘wheatstone’GPleP scriptsiPrimerscriptsiTest Some functions.ss
Okay ...

Downloading to "MyGP-8" 192.168.8.221

Dane. ..
b

3.7- Starting the Script Download Success

When theCompileandDownloadprocesses are

completed, you will be prompted to P

Start the new script — choose Yes to start it. u'/

Note that once the code is transferred into the ﬁ
Mo

Start the new script 7

GP-xx non-volatile flash memory, it will boot your

Script every time the unit is powered up. e

3.8 - Testing

Now its time to see the results of the code yolerdownloaded to the GP-xx panel.

Obviously, you can go to the button location asteln and watch for changes as you press the
buttons. An easy way to check many functions isaiee the XPoint software running while you
press the buttons. If you align the grid so thatgtgnals of interest are visible, you can watch as
temporary, or static connections are made. Yowevan watch as Salvos are taken to see
multiple connections change. This is handy whebulgging scripts too. Because the button code
is portable, you can develop multiple scripts usirgingle button panel in your office or rack-
room, verify the code works as intended, and thewmndbad the working scripts to the designated
panels in a Studio or Control room.

3.9 -Reviewing the Script Wizard Code

You can use the Script Editor to see the auto-geeer(AG) code produced by the Script
Wizard. To view the code select menu ité¢iaw->Script Editor...

Here is a sample Script and its code descriptions:

Wizard code starts here >
/I precedes all Comments.

Button types are listed as >
Comments

Define variables >

Startup action calls function to
set Button 6 LED on power up.

Action sets LED 6 to ON or
OFF depending on the state of
LIO 6 on power up.

Action lights BTN1 LED and
Fires Salvol.

Action clears BTN1 LED on
BTN1 release.

Action lights BTN2 LED, Stores
Source ID patched to Dest 22,

then connects Source 119 to Deg
22.

Release Action clears BTN2
LED then restores the stored
Source IF >0 to Dest 22.

A disconnect is performed if the
stored Source is = to zero.

= B

/7 The gray window box above this area is for Autogenerated Script Wizard code -

Al

5 | B

10

4 Configuring Device Properties

Some applications may require the GP-xx panellkottacontrol surfaces or interact with certain
signals that have logic functions mapped to theon.istance you may wish to take a Preset or
turn a channel ON and OFF on a surface. You migotwish to use the GP-xx panel at a talent
microphone location in a studio. These applicati@ugiire you to “tell” the GP-xx panel some
information about the surface and logic signalds Thwhat the Device Properties form is for.

4.1 - Surface Configuration
If you are using your GP-xx button panel to integfavith a Wheatstone surface, you will need to
setup your GP-xx button panel with a list of eaatiege to which it will communicate.

The setup steps only need to be performed once #iecsetup information will be stored in the
button panel's Flash memory and on your PC. Stiealevice which you wish to setup, then use
the "Device Properties" dialog box to specify theface IP addresses.

4.2 - Starting the Device Properties Dialog

Start the Device Properties Dialog by clicking"@evice" & "Properties..." on the main
window menu, or by pressing tek€TRL>-P keys. The following dialog box will appear. Select
"Surfaces' in the tree on the left side of the dialog box.

TDevice Properties - MyGP-8

7% Surfaces ¥ Surfaces
¢ InputB_bs 1-8
@ InputLios 9- 16 Suface 1: | 192 . 168 . 1 . 11

@ OupUtLIOS 1-8 g pare o | 192188 112
¥ Output LIOs O - 1¢

Surface 3

Surface 4

Surface B

Surface ¥

3
|
Suface 5 |
|
3
|

Surface 8

k. | Canicel | Help |

You may specify up to eight surface IP addressks.tdp IP address corresponds to surface "1"
in the surface interface functions. This addredisheiused when you specify a "surfid" of "1" in
any of the surf_xxx functions within your scriptswehen you select the "Surface Preset" option

11

in the Script Wizard. The second IP address fragrtolp corresponds to surface "2", the third
from the top is surface "3", etc. Unused surfatesikl be left blank.

Note: The controls will be disabled if you anet connected to the GP-16P device. If you are
disconnected, you are actually looking at the depioperties which are stored on your PC's hard
drive. These properties may not truly reflect theperties of your device, if the device has been
more recently configured from another PC.

4.3 - LIO Configuration
If you are using your GP-16P button panel to imtegfwith Logic /0 on your Wheatstone router,
you will need to setup your GP-16P button panehwitist of each LIO which it will access.
* LIO configuration done here maps pre-defined XPsighal logic to GP buttons for
Script Wizard programming. LIO1 maps to buttonIOPImaps to button2, etc.
» Custom scripts can access any of the 16 input tpuolLlO’s.
» Virtual LIO’s may be created so you don't eat uy physical logic i/o. Add a phantom
logic card to a rack in XPoint. See section 5 olpHer details.

The setup steps need to be performed each timergate a new script for a panel using mapped
logic. For example, Panel 1 is for the Host mic ases Source ID 10, Panel 2 is Guest 1, Source
11. UpdateDevice Propertiebefore you script the Guest panel.

4.4 - Starting the Device Properties Dialog

While CONNECTED-ONLINE - Start the Device Propestigialog by clicking oriDevice" &
"Properties..." on the main window menu, or by pressing4@IRL>-P keys. The following
dialog box will appear. Select one of the LIO iteimshe tree on the left side of the dialog box.

=,

rDevice Properties - MyGP-8

#5 Surfaces lnput LIOs 1-8

% Input LIfs 1 - 8 ot ST N
%5 Input Lié 9- 16 nabled aignal 1ype igna

@ Oouput LIos 1-8 InputLIO 1: ¥ | =] souce |
¥ Output LIOs O - 1¢ Input LIO 2: & souee |7

195

<l

[nput LIO 3 v |j Source |J 3
Iput LI 4: ¥ =] Souce | EREI
rputln s T [+ sowee | 1 [=] 1
[nput LIO B [|j Source | 1 |j 1
rputln . T [=] sowee | 0 1 [=] 1
et D& T [~ Souwce | 1=

k. | Canicel | Help |

You may map up to 16 Input LIOs and 16 Output LI@%e for each switch on a GP-16.
Input LIOs correspond to Logic I/O values which &é IN to the router matrix. Typical types of
input LIOs would be from switches like ON,OFF, Chugalkback, remote logic signals

12

associated with a microphone source. In a distratdwired system these signals would typically
come from a button on the announcer’s desk thded@to an input logic line on an LIO card in
your audio router.

Custom scripts for your GP-16P can drive input LIB&g thdio_set()function.

Output LIOs correspond to Logic I/O values which tad OUT of the router matrix. Typical
types of output LIOs would be machine start, maglsitop, and ON and OFF tally logic signals
to drive remote panel switch LED’s associated withicrophone source. In a discrete hardwired
system these signals woulgpically come from an output logic line on an Lé@rd in your
audio router then feed to a logic line on your awdtion system or to a switch’s LED.

In your GP-16P you can read output LIOs using itheglet() function.

The first input LIO corresponds to LIO id "1" inghio_set() function, the second to LIO id "2",
etc.. The first output LIO corresponds to LIO id T the lio_get() function, the second to LIO id
"2", etc..

Note: The controls will be disabled if you are not coctee to the GP-16P device. In this
situation you are looking at the device propentgch are stored on your PC's hard drive. These
properties may not truly reflect the propertieyadir device, if the device has been more recently
configured from another PC.

4.5 - Design Philosophy

During the design of the GP-16P we went back arith fan the merits of making the LIO
definitions a device property and using properbldandexes in the script function calls vs.
specifying the LIO definitions directly in the satifunctions. We felt that the first approach
would provide greater value in that if your insdibn contains several GP-16P panels with
similar functionality, you can use one script forad the GP-16P button panels and just modify
the device properties of each GP-16P.

Note: When you specify input LIOs for the GP-16P, yoll typically select a logic line which is
also configured as an input LIO in the XP GUI paogr You can point one of the GP-16P input
LIOs at a logic line which is configured as an autplO in the XP GUI, and the GP-16P will
happily drive it. The negative side of doing thisthere might also be another GP-16P or a
physical logic card driving the same output LIOeTrbuter has very extensive rules to arbitrate
who is driving output logic. These rules are badkidaypassed, if you adopt the mixed direction
approach. It's much safer to define a new signahhas an input logic line, drive the new
signal's input logic line with the GP-16P, then mect the new signal to the signal which has the
output logic and let the router apply it's ruleshte signal routing.

Note: When you specify output LIOs for the GP-16P, yadll twpically select a logic line which
is also configured as an output LIO in the XP Gtfigsam. You can point one of the GP-16P
output LIOs at a logic line which is configuredasinput LIO in the XP GUI, and the GP-16P
will happily read it.

13

5 LIO Example Using Device Properties

Before we get on with the following example you sldounderstand that there are two primary
ways to approach remote control of a surface cHaraneg the GP-xx panel. You can use a
custom script to control specific fader channaln a surface or you can use the Device Properties
to “point” the GP panel to specific source signawhich has been configured in XPoint with

logic associations. The difference may appear tsubéle but it really dictates how your overall
script will be written. The former uses surfacedtions in a custom script while the latter uses

the Script Wizard.

This Help File example describes a relatively carphethod using the Device Properties LIO
mapping feature. The method requires mapping Ld@i¢ in/out) resources to a virtual Logic
card in XPoint, then these pre-defined LIO’s argop& to physical GP-xx panel buttons using
the Device Properties form in the GP-16P Configaral ool software. Finally, the Script
Wizard is used to generate the script. This apprbas two benefits- the resulting script is very
clean and the GP-xx panel follows the microphanece signal to whichever surface it
connected to.

For the sake of this example, let's assume thdtave a microphone source named "JOES MIC"
in our system. We will be placing a GP-16P buttangd next to the announcer, Joe. We would
like to use some of the GP-16P buttons to provigewith remote ON/OFF, Cough and Talkback
capability. We would also like to have the GP p&®N/OFF button LED’s follow the

console’s fader status.

5.1 - Configure the Source Signal in XPoint

The first thing we need to do is configure the "BIIC" source signal with some virtual LIO
signals to perform these functions. The followiigufe shows how the LIOs will be defined for
"JOES MIC" in the XPoint GUI.

%Signal Definitions -JoE3

Audio Signal Location Logic 140 [1-6]] Lagic /0 [7-1 2]]

Audio Signal T
el S TR LIO Enabled Tier Rack Card Chan Card Type Fort # Direction lrwvert Function
+ Source

™ Destination L N :|¢ IE”E”—_I Logiz 10 1 = & In ¢ Ow [|Remdn -
Id 10 -

. PR I P | B 1= Logic 10 2 & & In ¢ Ou [|RemOr A
I:JDE!? MIC Mot Defined IV |2 3 =9 = Logic 10 3 F & n e 0wl |Cough -
ocation . = = = " -

’W ~ Logic1/00n| 4 W |2 3|7 39 = Logic 10 4 F| & In " Out [|Takback -
+ Mona E w2 21 2fla = Logic 10 1 #| ¢ Ine Out [|OnTaly -
™ Steren

I P ’ E v |2 %1 %3 = Logic 10 2 | In & 0w [|OTaly -
1 Surrour
I [% Define ...
Apply | LCancel | Agszign to Controllers |

Defining a virtual L1O signal only differs from defng a real physical LIO signal in that we do
not require real physical hardware for the 1/0.c8ithe 1/O is virtual and our GP-16P is

14

emulating the hardware we will point the LIO asateil with JOE's mic to an LIO card which is
not actually populated in the router rack. You nadd an LIO card to your "Rack Defs" dialog
box, since this is the only way to reserve the f;TRack & Slot" numbers used for routing the
logic. But the slot which you allocated shoulgt have a real LIO card inserted into it.

Things to take note of in this diagram are the @ignmber and the LIOs for each logic function.
The signal number and the LIO number will come jpliy when we configure the logic I/O for
the GP-16P.

Item to Note Type ID
JOES MIC Signal Source 10
Remote ON LIO In 1
Remote OFF LIO In 2
Cough LIO In 3
Talkback LIO In 4
On-Tally LIO Out 1
Off-Tally LIO Out 2

5.2 - Configure the GP-16P LIOs

Let's assume that we want to use the first foulobston our GP-16P to perform these functions.

Button | Function Details

1 ON The Remote ON LIO will be triggered when the buti®pressed, the button
LED will light to indicate that the channel is oin.a

2 OFE The Remote OFF LIO will be triggered when the buipressed, the button

LED will light to indicate that the channel is @fit.

The Cough LIO will be triggered when the buttopiessed and released
3 Cough when the button is released, the button LED wglhtito indicate that the
button is down.

The Talkback LIO will be triggered when the butismpressed and released
4 Talkback when the button is released, the button LED wglhtito indicate that the
button is down.

The Script Wizard assumes a one-to-one correldgtween the LIO number in the GP-16P
device properties and the auto generated actioohvithie Script Wizard will generate. Therefore,
we need to define the LIOs in the device propertidhe proper locations for the button
functions. The following figures show how we wikfthe our LIO properties in the GP-16P for
this example.

15

rDevice Properties - MyGP-8

Define the first four
input LIOs to match
the Remote On,
Remote Off, Cough
and Talkback LIOs
for the "JOES

MIC" signal.

Take note that these
are configured as
"Input” LIOs in the
GP-16P since we
are sending this
logic into the router
matrix.

Define the first two
output LIOs to
match the On-Tally
and Off-Tally LIOs
for the "JOES
MIC" signal.

Take note that these
are configured as
"Output” LIOSs in
the GP-16P since
we are reading this
logic out of the
router matrix.

¥ Surfaces #lInput LIOs 1-8
Input LIfps 1 -8 _ :
% It L a-16 Enabled Signal Type Signal |0 LIO
Output LIOs 1-8 InputLIO T vV |+] Souce 0+ 1
BOuputlos 9-1 ypin2 W [<] Sowes | 10 [<] 2
putlID2 ¥ [~ Souce | 0~ 2
putlin g ¥ [+ sowee | 10 [S]14
putL0s T [+ Sowee | 1 [=] 1
Input LIO & [|ﬂ Source | 1 |j 1
putli0 7 T [=] sowee | T [+ 7
~ pubog T [~ Souce | 1[=]
>
ITI Cancel | Help |
Device Properties - MyGP-8
¥ Surfaces %5 Qutput LIOs 1-8
6 Input LIos 1- 8 _ _
% Input LIOs 9 - 16 Enabled Signal Type Signal |0 LIO
5 OutputLIos 1-8 OuwpuwliDl: V¥ | =] Souce W[+ 5
BOwputLIos 8- 1 qupgnz @ [« Sewes | 10 =] &
OuputlD T [~ Souce | T = 1R
Ouput LD 4 T [+ Sowee | 1 [=] 1
OuputUOS: [~ [+ Sowee | 1 [=] 1
Cutput LIO & [|ﬂ Source | 1 |j 1
Ouput D7 T [=] sowee | T [+ 71
~ OuwputlD® T [~] Souce | 1=
>
ITI Cancel | Help |

Important Distinctions

* The "Signal Type

, "Signal ID" and "LIO" fields ao®nfigured to match the values from
the XP GUI signal definition dialog box.

e The LIO field value, 1 through 12, is NOT the Lo@lard’s port number, but the
LIO Enabled# in the Signal Definitions form.

16

5.3 - Create the Mic Control Script Using Script2ahd

Now we want to use the Script Wizard to generaterigt for the GP-xx.

Configure the first and second buttons tdEmentary LIO functions withExternal LED

-,

Parameters:
LED Drrive:

drive.
Script Wizard - Mic-panel-example.ss

=3 Buttons » | ¥ Button 1
@Butionl | | _
% W Function:
%5 Button 3 " Mone / Custom
% Button ¢ " Fire Salvo
5 Button 5 " Mamertary $vC
%5 Button 6 {" Connect =T
%‘ Button ¥ + Momentary LIO
@ Button 8 " Taggle LI
@ Button 9 ™ Taly LID
® Button 10 {" Surface Preset
%5 Button 11 -

< FES R e 1.7}:.

o]

External

Cancel

Help

Then configure the third and fourth buttons tdvbementary LIO functions withinternal LED

drive.

rScript Wizard - Mic-panel-example.ss

-,

- Butions
¥ Button 1
%5 Button 2
5 Button 3
5 E.uﬁﬂ 4
¥ Button 5
%5 Button 6
5 Button 7
¥ Button 8
¥ Button 9
%5 Button 10
5 Button 11

™ i

| ¥Button 3

Function:

Mone / Customn
Fire Salvo

b omentary #7C
Connect XvC

b omentary LIO
Toggle LIO
Tally LIO

Surface Prezet

DN N R N

i N

W
S Rt 17 !

Parameters:
LED Drive: | Internal j
(] | Cancel Help

17

5.4 - Reviewing the Script Wizard Code

The following script will be generated. The buttb@& 2 actions simply drive the LIOs and LEDs
corresponding to the buttons. A periodic timer dsithe button 1 & 2 LEDs with the value read
from the LIO corresponding to those buttons. Thedou3 & 4 actions simply drive the LIOs and
LEDs corresponding to the buttons.

IIAG_START//AG_START

/I All code between the AG_START and AG_END tagauso
I/l generated and should not be modified.

/I Script Generator GUI V1.1.1

//IAG_BTN1 TYPE="LIO_MOMENTARY" LED="1"
/IAG_BTN2 TYPE="LIO_MOMENTARY" LED="1"
/IAG_BTN3 TYPE="LIO_MOMENTARY" LED="0"
/IAG_BTN4 TYPE="LIO_MOMENTARY" LED="0"

variable: AG_scratch // Temporary scratch padalde for AG actions.

action: STARTUP
{

}
action: AG_TIMER_FUNC //LIO 1 and 2

AG_scratch = tmr_create_periodic (3, "AG_TIMBERINC")

btn_led (1, lio_get (1)) // get LIO 1 valueddight LED1 (ON) if true
btn_led (2, lio_get (2)) //get LIO 2 value dight LED2 (OFF) if true

}

The auto-generated script code for the first twitdms will assert the input LIO while the button
is pressed and de-assert the input LIO when thermid released. The button LED will light
from the results of the periodic timer query intggtabove..

action: BTN_1_PRESS //mapped as REMOTE ORavice Properties
lio_set (1,1)

}

action: BTN_1_RELEASE

lio_set (1,0)
}

action: BTN_2_ PRESS //mapped as REMOTE OFbBénice Properties

lio_set (2,1)

}
action: BTN_2 RELEASE

lio_set (2,0)
}

18

The auto-generated script code for the third andtiicbuttons will assert the input LIO while the
button is pressed and de-assert the input LIO winreibutton is released. The button LED will
light to indicate that the button is down.

action: BTN_3 PRESS //mapped as COUGIDavice Properties

btn_led (3,1)

lio_set (3,1)
}
action: BTN_3_RELEASE

btn_led (3,0)
lio_set (3,0)
}

action: BTN_4 PRESS //mapped as TALKBACKD®vice Properties-puts surface fader in
/ICUE speaker
{

btn_led (4,1)
lio_set (4,1)
}
action: BTN_4 RELEASE
{
btn_led (4,0)
lio_set (4,0)
}

/IAG_END

Note:

In this example we have seen how the Script Wiaasbciates a button with the corresponding
LIO from the LIO definitions in the Device Propeidialog box. This one-to-one
correspondence is only a limitation of the Scripzavd. If you are writing a custom script you
may access any LIO definedDevice Propertiesrom any action or subroutine.

5.5 - Beyond the Script Wizard

The Script Wizard is a nice way to get some fund#aldeatures up and running quickly and
will suffice for many broadcast applications. Certapplications with multiple panels in which
actions are triggered under Boolean conditionsady# more complex and will probably require
some head scratching and, you guessed it —a cisstidon.

19

6 What is the Script Editor?

The Script Editor is a specialized text editor bmito the GP-16P Programming tool. This editor
provides a convenient way to write custom scripis @aso view Script Wizard code.

GP-xx scripts are actually specially formatted fdgs saved with a “.ss “ file extension.

The Script Editor automatically separates the $&zard code from your custom code by
dividing the file into two panes — the top “readydmpane has a gray background and houses the
AG or auto generated Script Wizard code. The botftane is the editable text editor pane used
for writing your own scripts.

6. 1 Script Editor Features
Script Wizard code is separated and displayed‘iead only” pane.
e Script text is displayed in a “context sensitivelar scheme with comments in green, and
keywords in blue.
e Standard text select, cut, copy, paste, undo, edal functions.
e Compiler error finder jumps the cursor to probléne lwhen the reported error is clicked.

A The gray window box above this area is for Autogensrated Script Wizard code - do not Edit that code. & |

A4 This space is where you create your own actions and Sub Routines.
A/Declare Variahles first

A4 wariable: myvariable

LTI AT

AAPut Subroutines next

J/subroutine: mysubroutine

A4 my subroutine code here

j//;V/ffﬁ///f/fﬂ///f/fﬂ//f

A/Place Actions last

V4 action: MYACTION

v _

i//' my action code here
IR 00040

£

20

6.2 Third Party Editors

Scripts may also be opened, written, and editedgrogramming oriented editor but care must be
taken to be sure that the file structure, formgttamd script syntax is maintained. Avoid using
generic text editors like Notepad or Wordpad forptccreation. You will know right away at
Compile time if there is a problem

If you plan on doing a lot of scripting you mighirsider using a third party programming editor.
Notepad++ is a nice freeware editor. When you @@ script in Notepad++, you can choose a
“Language” skin, like “Flash actionscript”, thatlirgive you line numbers and a context sensitive
text color scheme. You will still have to open fte in the GP16P tool before you compile — be
sure to save the file in the editor first.

You can do an Internet search for “Notepad++" tavdlmad this editor.

21

7Creating Custom Scripts

A good way to learn how to write custom scriptthimugh experimentation - so we will open a
custom script and examine the format and syntakeofile. Then feel free to edit button behavior
and add features. You can also use the Script Wiregenerate code to see specific function
examples, then copy and paste into a new fileudhér experimentation.

7.1 - Getting the Example File

The example script file, interlock16.ss, is locatedppendix A of this document and may be
copy and pasted into the Script Editor user’'s windGopy and paste details are located in
Appendix A.

7.2 - Example Script Design

The custom script used in this example is desigoedt as an “interlocked” source selector with
latching LED indicators. Each button will “patchfi audio Source to a common Destination and
light the button’s LED on the panel. The buttonBmust be “latched” ON so the operator
knows which button is currently selected. “Inteled” simply means that with each button press
the previous source and LED are disconnected anceataced by the current button press. In
logical terms the 16 switches and LED’s are “exe@©R’d".

Open the Script Editor by choosiNgw->Script Editor...

¥ Script Editor - interlock16.ss Q@]
M

A IMG_START

A4 A1 code between the AS_START and AS_END tags is auto
A4 generated and should not be modified.

A4 Script Generator GUI wWi1.1.1

wvariable: AG_scratch // Temporary scratch pad wariable for AG actions.
action: STARTUP
i

h
A0 END

j/ R R A L A A A R o R AR .

A4 Custom Interlock switch code

f B e R e o e e o R R]

constant: OH = 1

constant: OFF = 0

wariable: Ted_num = 1
wariable: switch = 0
wariable: source = O
wariable: current_switch = O
wariable: Tast_led = O

L R R A A R g A

A4 Map the destination you want to switch sources to here
ffww

constant: dest_a = 1/ select destination id# in router for this 16x1 Tine selector

R R R R R R R AR RN R R R TR

S/map source signal id's to buttons 1 through 16

L D g e ok b Lk Ll e S gy R & £ 2L T L e R

constant: sourcel = 11 Afchange the 11 to another Source signal id# as required bl

22

7.3 - Auto-generated Script Components
Notice that the first section of the custom schig$ a few lines of auto-generated code. These are
minimum startup lines and must not be altered tated.

IIAG_START

/I All code between the AG_START and AG_END tagauso
/I generated and should not be modified.

/I Script Generator GUI V1.1.1

variable: AG_scratch // Temporary scratch padakde for AG actions.

action: STARTUP // The startup action is empty hseablank a new file has no Start requirements.

{ /I ' You can use the Script Wizard to point thiartup to your own startup subroutine.
} /[See the next section for details.
/IAG_END

7.4 - Custom Start up Subroutine

Let's digress for a moment- sometimes you mighttwanr panel to startup in a special state
prior to any button actions. Or perhaps the LER'géur design are being driven from remote
logic states and you'd like to synchronize thenpower-up of the GP —xx panel.

Use the Script Wizard’'s Custom Action Startup digo point to your startup subroutine. In the
case below we will call “mystartup” subroutine whee GP-panel powers up.

Script Wizard - example-startup call.ss .W
FEeutton 7 | ¥ Startup
5 Button 8
#5 Button 9 Subroutine M ame: |l'l'l_'r'3t~f'lftul2I
%5 Buthon 10 Mot
<& Button 11 oes _ o _
Buthon 12 You musgt defing all action haaok, subroutings in pour custom scnpt code,

@ Lol athenwize you will get unresalved subrouting emrorz when the scnpt iz
%5 Button 13 compiled.
¥ Button 14
%5 Button 15
5 Button 16

- Custom Action
¥ Startu

£ >

k. | Canicel Help

23

Resulting code with new subroutine and some streactamments added.

/IAG_START

/I All code between the AG_START and AG_END tagauso
/I generated and should not be modified.

/I Script Generator GUI V1.1.1

/IAG_HOOK TYPE="STARTUP" ACTION="mystartup"

variable: AG_scratch // Temporary scratch padakde for AG actions.

action: STARTUP
{

}
/IAG_END

/Iaa * *% * * *kk * *% * * *% * *kkk * *%

/I Custom Script starts here

//*** kkhkkkhkkhkkhhkkkhhkhkkhhhhkhhik
/[Define global variables first

/IDefine Constants next

/IDefine actions and subroutines last

call mystartup ()

/I The subroutine “mystartup” is called by the AG@le's STARTUP action
/lwhen first powered up or the Script is re-started

subroutine:mystartup

{

/lput your startup code here

}

/I Custom Script ends

7.5 - Example Script Structure

Now back to the Example interlock16.ss script filae first thing you will notice in the example
script is a comment. Comments are extremely useftthey help you and anyone else working
with the script understand and decipher what isgon. Comments must always start with a
double forward slash

/lthis is a comment line

Comments are ignored by the compiler and can aoatay characters. You can have as many
comments as you'd like in your script.

24

Scripts must follow a certain format in order fbetcompiler to evaluate it correctly. The
example script follows this format:

» AG Start code — auto-generated code from the wiaadda basic startup action.

» This code must be present even if you plan ontieg@ll of the button functions and
generally should not be modified. This code is atiplayed in the Script Editors top
window. The top window does not allow editing.

» Constants and variables - define all your constamtisglobal variables first. Example
constants are Source or Destination signal ID nug)lveords that make your script
easier to read and write like ON- OFF, LEDS5, eton§tants are fixed and never change
during run time. Variables may be local or glomascope and may be modified during
runtime.

* Global variables are listed at the top along wihstants and are “visible” anywhere in
the script.

» Actions and Subroutines- next comes the main coesrof your script. It does not
matter which order you put these in but it makesedo keep all button actions together
for readability.

* Local variables are defined within the curly braogan action or subroutine and are only
“visible” within that action or subroutine

Let's look at the example code in sections.

7.6 - Example Script —Variables and Constants
The example script needs to know which switch ésped and when to light its LED. We also
have to map the destination we want to route todsfithe the sources to be switched.

You seldom know all the variables your script watjuire when you begin, so just add them here
at the top as you go. It makes sense to groupicesdsiables according to how they are used in
the script. This can make reading and deciphehagstript easier now and when you have to edit
it a year from now!

/I Custom Interlock switch code
//*** kkkkkhkkkkkkkhhhkhhkhhhhhhhhhhhhhhhrx

*

variable //intentional error - no colon after therd variable -no variable name
constant: ON =1

constant: OFF =0 /I Constants cambe&d in with variables as you see fit.
variable: led_ num =1

variable: switch =0

variable: source = 0

variable: current_switch =0

variable: last_led =0

25

Comments added to the Constants section help rifiagdditotice how the Destination and
Sources are defined as constants. These signalriibers could have been “hard coded” as
numbers in the Action section but are easier toifyaal the future by listing here. Additional
comments could include the Source signal namegioin or the constant names could even be
the Source signal names — whatever makes the st $0 you the programmer.

/Iaa * *% * * *kk * *% * * *% * *kkk * *% * *kk

/I Map the destination you want to switch sourcekedre
//*** kkkkkkkkkkkkkkkkkkkkkkkkkkkhkkhhkhkhkkkx

constant: dest_ a=1 // select destination id#irter for this 16x1 line selector

/Iaa * *% * * *kk * *% * * *% * *kkk * *% * *

/Imap source signal id's to buttons 1 through 16

constant: sourcel = 11 //change the 11 to anotherc8 signal id# as required
constant: source2 = 12

constant: source3 = 13

constant: sourced4 = 14

constant: source5 =15

constant: source6 = 16

constant: source7 = 17

constant: source8 = 18

constant: source9 = 109

constant: sourcel0 =110

constant: sourcell =111

constant: sourcel2 = 112

constant: sourcel3 =113

constant: sourcel4 =114

constant: sourcel5 =115

constant: sourcel6 = 116 //change the 116 to ansthece signal id# as required

26

7.7 - Example Script — Subroutines

The example script uses two subroutines — oneridlbahe switch presses and one to store the
last switch pressed so it's LED can be turned OfrB subsequent switch press. Note that a
custom startup routine was not included. Try wgtmstartup subroutine that figures out which
source is currently feeding “dest_a” and then lidjiet appropriate button’s LED.

The first subroutine — handle_sw_press - is ddiethe Button Actions defined at the end of
the Script. Button Actions “pass” two variables,&1d $2 to this subroutine.

This subroutine:
* Modifies the value of “switch” to equal $1 and “soe’ to equal $2.
* Turns OFF the previously selected switch’s LED.
» Calls subroutine to store the currently selecteitcwumber.
* Connects the currently selected source.
» Lights the LED in the currently selected switch.

This subroutine includes #tint” statement to print a message to a Telnet winddeasp see
the Script de-bugging section for details on u$tnigt and Telnet.

//***********************

/I Subroutines
//***********************

subroutine: handle_sw_press //This subroutine duest of the work.
/It receives switchdidesource info from the button
/lpress actions.

switch = $1 /I $1(reads “string one”) e tswitch number passed here when subroutine dajled
/I action.

source = $2 I1'$2

btn_led (last_led, OFF)

call store_switch (switch)

connect (dest_a, source) //dest_a is a fixstirdgion defined above as a constant

btn_led (switch, ON)

print ("connecting Source ID " # source # " tedD" # dest_a#".")

The second subroutine simply receives a variallgeyéswitch”, and stores it. Note that this
could have been done in the “handle_sw_press” sitibey but as an exercise this illustrates
variable passing and subroutine nesting. Noticettigavariable “current_switch” was never used
in the script.

subroutine: store_switch //

{

current_switch = $1 // string 1 passed here mevalf the “switch” variable in the calling subraei
last_led = $1 /l the “last led” varialis set to = the “switch” variable.

}

27

7.8 - Example Script — Actions

For this example each button is given its devassaction.ReleaseandOver-pressactions were
not required. By putting the “guts” of the scrihavior in Subroutines, the Actions are kept
simple and straight forward. Each button pressugligsets the value of “switch” and “source”
and then passes those variables to the “handle ress”gsubroutine.

// Button press section
1
action: BTN_1_PRESS

switch=1
source = sourcel
call handle_sw_press(switch, source)

}

action: BTN_2_PRESS
{

switch = 2
source = source2
call handle_sw_press(switch, source)

}

action: BTN_3_PRESS

switch =3
source = source3
call handle_sw_press(switch, source)

}
action: BTN_4_PRESS

switch = 4
source = source4
call handle_sw_press(switch, source)

}
action: BTN_5_PRESS

switch =5
source = sourceb
call handle_sw_press(switch, source)

}

action: BTN_6_PRESS

switch = 6
source = source6
call handle_sw_press(switch, source)

}
action: BTN_7_PRESS

switch=7
source = source?7
call handle_sw_press(switch, source)

}
action: BTN_8 PRESS

switch = 8
source = source8
call handle_sw_press(switch, source)

}

28

action: BTN_9_PRESS

switch =9
source = source9
call handle_sw_press(switch, source)

}
action: BTN_10_PRESS

{

switch = 10

source = sourcel0

call handle_sw_press(switch, source)

}
action: BTN_11_PRESS

{

switch = 11

source = sourcell

call handle_sw_press(switch, source)

}

action: BTN_12_PRESS

switch = 12
source = sourcel2
call handle_sw_press(switch, source)

}
action: BTN_13_PRESS

switch = 13
source = sourcel3
call handle_sw_press(switch, source)

}
action: BTN_14 PRESS

{

switch = 14

source = sourcel4

call handle_sw_press(switch, source)

}

action: BTN_15_PRESS

switch = 15
source = sourcel5
call handle_sw_press(switch, source)

}
action: BTN_16_PRESS

{

switch = 16

source = sourcel6

call handle_sw_press(switch, source)

}

7.9 - Custom Scripting Suggestions

Before you embark on your scripting expedition tiestime to map out the requirements in a
spread sheet or note pad. Spending a bit of tinfeeiplanning phase can save you some
headaches later on and will at least make it e&sigtiay focused on coding once you start getting
deep into it. Also writing out the requirementse(iTurn the xx ON when yy AND zz are true

OR nn is NOT true) can be helpful for scripting gdex logic statements.

The GP Scripting language is a cross between ted®Basic programming languages. Correct
syntax is essential, and is a common source of tengrors so be sure to carefully check case
sensitive spelling, braces and parentheses pladeatenwhenever you get a compiler error.

7.10 - Scripting Router Control

By now you have been exposed to many of the ramatetrol functions available. You can review
in detail the complete set of Router Functionslatée by opening the Router Functions section
of the Help file. There you will find informatiomahe using the following:

Router Function Description

Connect Makes a cross-point connection in the route

Disconnect Breaks a cross-point connection in dlier.

Lock Locks a cross-point connection in the router.

Unlock Unlocks a cross-point connection in the eout

Connection Queries a destination to find out wibaree is connected to it.

Locked Queries a destination to find out if itasked.

Fire_salvo Fires a pre-defined Salvo - requiresSleo ID number.

Find_src Returns the source signal ID number wloenkypow the source name and
location.

Find_dst Returns the destination signal ID when kmaw the dest name and location.

Find_salvo Returns a Salvo ID number when you kttenSalvo name.

Lio get Returns the current value — 1 or 0 — adgid signal in the router.

Lio_set Sets the value — 1 or 0 — of a logic sigmahe router.

7.11 -Scripting Surface Control
Control Surfaces may be directly controlled usiriguat in surface script functions. You can find
detailed information on these functions in the Hégis “Surface Functions” section.

Surface Functions can be divided into two groupe first set of basic functions control the
rudimentary tasks of taking a surface preset,ggetifader's ON status, and turning a fader
channel ON. The second “advanced” set allows yautiliae the Automation Controller protocol
built into each surface.

7.12 - Basic Surface functions

These functions may be used directly in your s@ipt require a minimum amount of scripting
knowledge.

surf_take_preset — takes an “Event’ stored on faseir The surface ID parameter is an index into
the surface list entered in the Device Propertesf

surf_get_input_on — returns the channel ON stdta)N, 0 = OFF.
surf_set_input_on — turns a channel ON or OFF.

29

7.13 - Advanced Surface Functions

These functions require just a bit more programnkimgwledge to implement correctly. The
function “surf_talk” is very powerful because ital's you to use all of the surface’s Automation
Control Interface (ACI) command set. The automagiootocol is ASCII based which makes it
easy to incorporate ACI commands using the buiirface functions. Virtually every switch,
fader level, knob settings, etc. is accessible. ABEcommands are available on an “as needed”
basis for Wheatstone customers. Please contacstar@er Support representative for details on
acquiring this information.

surf_talk — use this to send ACI commands to aasexf
surf_reply — use this to retrieve the last repbereed from a surface.
surf_string- use this to parse a reply string.

7.14 - Example surf_talk Commands
If you are reading this then your curiosity mustiigued so here are a couple of examples of the
syntax required for use with surf_talk.

surf_talk (1, “INPUT:7|FADER:192") // sets fadetd0dB on surface 1.

surf_talk (2, “INPUT:4|ON:0") // turns channel 4 BBn surface 2.

surf_talk (3, (“INPUT:5|CUE:1") //puts fader 5 inJE on surface 3.

The Surf ID used in the examples above comes fhentist of Surfaces defined in Device
Properties.All of these AClI commands generate esgliom the surface that may be stored,
parsed, and acted upon in your script. Fader vdhleisito the range of 0-256. Note that nominal
dB level conversions to integers suitable for ugh teurf_talk” vary by surface type and may be

calculated using special set of equations, whiehaaailable on request along with the ACI
commands.

30

8 GP16P Scripting Language Overview

The following Script Language overview may be foumthe GP-16PConfiguration Tool's Help
file. The Overview and Structure sections are idebtlifor reference and will give you an idea
how a script is built.

Please refer to the Help File for specific detailswriting Statements, Boolean Expressions, etc.

The scripting language used to define virtual nreemstructions for the programmable button
panel is a very simple language to learn. If yaufamiliar with C or Basic or any number of any
other languages you should feel at ease writingtsdior the GP16P in no time.

8.1 - Case Sensitivity
Everything in a script file is case sensitive. Tdentifiers "xYz" and "xyz" are not equivalent.

8.2 - Comments

A comment starts with two forward slash charact®rsce a comment starts all characters are
ignored until the end of the current line. A cominesn also start with /* and end with */. The
following example shows some comments.

/1 This is a conment
/1 More coments can nake your script easier to read

X =x +1 /1 Coments can end a |line of script code

/*

This is a

mul tiline comment
*/

8.3 - Actions

Actions are the basic execution unit of a scriptypical script will contain several action
definitions. Events that occur within the GP16R wijger an action.

Action names can be any unique non-reserved idemt&n identifier can be up to 32 characters
long. The first character must be a letter; thiofeing characters may be letters, numbers or the
underscore character ("_").

8.4 - Global Variables

Scripts may have an unlimited number of globalalaigs. Global variables have visibility
throughout the script file. Every action and sulirehas visibility to a global variable. Global
variables retain their values between executiogach action.

31

Variable names can be any unique non-reservedifidéenfn identifier can be up to 32
characters long. The first character must be arldtte following characters may be letters,
numbers or the underscore character (*_").

All variables in the scripts are treated as charagtrings. You can define a variable (ie x), assig
a text string to x, perform some string operations(, then assign a number to x, and perform
mathematical operations on x.

8.5 - Local & Static Local Variables

Script actions and subroutines may have an unlimitenber of local variables. Local variables
have visibility throughout the action or subroutibat do not have visibility from within other
actions or subroutines. Static local variablesimdfzeir values between execution of each action
or subroutine.

8.6 - Constants

Scripts may have an unlimited number of constabsistants have visibility throughout the
script file. Constants have all the same propedteglobal variables, except that you can not
assign a value to a constant at runtime.

Constant names can be any unique non-reservedfielern identifier can be up to 32
characters long. The first character must be arldtte following characters may be letters,
numbers or the underscore character (*_").

8.7 - Arrays
Scripts may have an unlimited number of globaly@r&lobal arrays have visibility throughout
the script file. Each element of an array hashallsame properties as global variables.

When an array is declared an array dimension gsd#slared. When indexing elements of an
array, the first element has an index value of .Zénis is the same as arrays in the C language.

Out of bounds write access to an array will be rgdoOut of bounds read access to an array will
return an empty string.

Array names can be any unique non-reserved identfin identifier can be up to 32 characters
long. The first character must be a letter; thiofeing characters may be letters, numbers or the
underscore character ("_").

32

9 GP16P Scripting Language Structure

9.1 - Script Structure

The structure of a script file is shown below. Glbbkariable declarations must be done at the
start of the file before any actions are defindakfé can be any number of actions defined in the
script file. Comments may appear at any point endtript file.

const ant decl arati ons

vari abl e decl arati ons

array decl arati ons

action bodies

subrouti ne bodies

9.2 - Constant Declarations
A constant declaration begins with the keyword 'stant:" followed by the constant name and a
value assignment. The following example shows thetire of constant declarations.

numrber
"string"

constant: nanme
constant: nane

The following example shows the declaration of t@astants. The first global constant "c1" is
initialized with the numeric value of 1000. The @ed constant "c2" is initialized with the string
"Have a nice day.".

constant: c1l 1000
constant: c2 "Have a nice day."

9.3 - Global Variable Declarations

A global variable declaration begins with the keysvtvariable:" and the variable name. After
the variable name an optional assignment may befsmk The following example shows the
structure of global variable declarations.

vari abl e: nane

vari abl e: nane
vari abl e: nane

nunber
"string"

The following example shows the declaration of ¢hgiobal variables. The first global variable
"v1" is not initialized. The virtual machine wilhitialize this variable to an empty string. The
second global variable "v2" is initialized with thameric value of 10 . The third global variable
"v3" is initialized with the string "Hello World".

variable: vl

vari able: v2
vari able: v3

10
"Hell o World"

33

9.4 - Global Array Declarations

A global array declaration begins with the keywtadray:" and the array name. After the array
name an array dimension must be specified. Arragig Ime one or two dimensional. The
following example shows the structure of globahgirdeclarations

array: name [size]

array: nane [size][size]

The following example shows the declaration of glabal arrays. The first global array "al" has
ten elements and the second global array "a2" Gaglements.

array: al[10]

array: a2[100]

The following example shows the declaration of a thmensional global array

array: al[10][4]

Note: The virtual machine treats all arrays asdimensional. The compiler will flatten all two
dimensional array accesses into a single dimerisiear array.

9.5 - Local & Static Local Variable Declarations

A local variable declaration begins with the keyd/twariable:" and the variable name. After the
variable name an optional assignment may be spdcifihe following example shows the
structure of local variable declarations.

vari abl e: nane

vari abl e: nane
vari abl e: nane

numrber
"string"

The following example shows the structure of stitoal variable declarations.

static variabl e: name
static variabl e: name
static variable: nane

numrber
"string"

The example in the Action Bodies section showaueof a temporary and a static local
variable.

9.6 - Action Bodies

An action declaration begins with the keyword "awti followed by the action name, then an
opening curly brace. Any number of statements reaide within the action body. The end of an
action is indicated by a closing curly brace. Tolofving example shows the structure of an

action body.
action: nane
{

| ocal variable decl arations
st at ement s

34

The following example shows a typical action botlgis action is named "BTN_1 PRESS". It
has two local variables. The variable "count" &atic variable that will be incremented each
time the action is executed. After the count isentented a message string is built up with the
count included and the message is printed to theate (a Telnet window).

/1 This action will print the nessages:

// SVYM This action has been executed 1 tines.
// SVM This action has been executed 2 tines.
// SVYM This action has been executed 3 tines.
// SVM This action has been executed 4 tines.

/1 etc ...
e e e
action: BTN 1 PRESS

{

static variable: count = 0
vari abl e: nessage

count = count + 1
message = "This action has been executed " # count # " tines."
print (message)

9.7 - Action Parameters

When an action is executed a set of four parameftidirbe passed to the action. All four
parameters are not always used. If a particulzZomtgpe does not use all four parameters, the
unused parameters will contain empty strings.

The meaning of the parameters is specified by dhecg of the action, see the sectimtion
types. Action parameters are accessed by the builtdiiabke names "$1", "$2", "$3" and "$4".

9.8 - Subroutine Bodies

A subroutine declaration begins with the keywornabteutine:" followed by the subroutine name,
then an open curly brace. Within the subroutineylsr@ any number of statements. The end of a
subroutine is indicated by a closing curly bradee Tollowing example shows the structure of a
subroutine body.

subrouti ne: nane

{
| ocal variabl e decl arations
st atenent s
optional return

}

9.9 - Subroutine Parameters

When a subroutine is executed a set of four paemneitill be passed to the subroutine. All four
parameters are not always used. If a particulaomtgpe does not use all four parameters, the
unused parameters will contain empty strings.

Subroutine input parameters are accessed by thdrbuariable names "$1", "$2", "$3" and
"$4". The following example shows the use of par@rgewithin subroutines.

35

A Subroutine may return one parameter to the callee caller will access the returned
parameter through the built-in variable name "#i0iis parameter will remain valid until the next
subroutine call is made.

subroutine: sumup_1

{
var sum
sum = $1 # $2 # $3
return sum
}
subroutine: sumup_ 2
{
return ($1 + $2 + $3 + $4)
}
subroutine: print_sum
{
print_sum ("Sum= " # $1)
}
L R e R
/1 This action will result in the follow nfg nessage on the consol e:

/1 SVM Hello Wrld
[/ SVM Sum = 100

I i
action: test_action
{
call sumup_1 ("Hello", " ", "World")
print ($0)
call sumup_2 (10, 20, 30, 40)
call print_sum ($0)
}

36

1 0 Script Debugging

If you have delved into writing your own scriptswwill inevitably have to debug them -
if only to root out spelling or other minor syntexors. Programming and debugging go
hand in hand. Fortunately there are a couple of useful tools to aid you in your time
of need.

10.1 - Finding Compiler Errors

The “jump to error” feature in the Script Editofaals you to click on a reported

compiler error in the Main GP16P window to jumghe line in the Script near or where
the error is present. This feature is handy farkiray down bugs in scripts that will not
compile. A word of caution, there are literally > ways to write bad code, so this
feature will usually get you close to the line wath error and not on the exact error. Also
the Script Editor lacks a line number feature smit be difficult to count lines out,
especially in large scripts.

7 GP-16P Configuration Tool - MyGP-8 (On Line - Connected) - [interlock16.ss] E]@

File Wiew Build Device Help

BEEdE O S22 Fd & n ?

ERROE (11ne:19) syntax error, unexpected goCOMSTANT, exWheatstone Frogrammable Panel Compiler "wsgppc’ wversion 0.2.0
Copyright 2005, Wheatstone Cor‘p A11 rights reserved.

Compiling: C: \Program F1'Ies\'-\'heatstone\GPlGP\scr"lp‘ts\Pr‘1merScr‘1p‘ts\1 nterlocklé.ss

ERROR ('I'lne 19) syntax error, unex<pected goCOMSTANT, expecting ':

SOrry. .

Clicking right on the compiler ERROR line shown abavill cause the Script Editor to
highlight the approximate error location — showiohe

action: STARTUP
i

4 I

A/ hE_END

P P P P A

/’,/ Custom Inter"lock switch code

wEEE wEEE wEEE
wvariahle ,f',f"lntentmna'l error - no colon after the word wariable -no wariable name

constant: ; =) << The highlighted line is ok —error is just abate
variakle: switch = 0

variable: source = 0

wariahle: rurrent switrh = 0

10.2 - Third Party Editors

If you plan on doing a lot of scripting you migldresider using a third party
programming editor. Notepad++ is a nice freewaroed/Nhen you open a GP script in
Notepad++, you can choose a “Language” skin, IlKash actionscript”, that will give
you line numbers and a context sensitive text cedtierme. You will still have to open
the file in the GP16P tool before you compile -sbee to Save in the editor first.

Do an internet search for “Notepad++”" to downlolid editor.

37

10.3 -Using “Print” and Telnet to Debug

The Print statement may be inserted anywhere lg@¢ript code to print messages, variable
values, etc. to a Telnet window. This feature isesrely useful for tracking down bugs or
displaying script behavior in compiled code runnomgthe GP-xx panel.

Here’s how it works.

Add a Print statement anywhere in a subroutineetorm Add it to a button press action to print
every time the button is pressed or released.

Example Print Statements:
Print (your_variable_name)
Print (“Put text in quotes”)
Print (“Put text in quotes and " #variable# “ uke # sign to concatenate variables and text”)

To Telnet to the GP panel you need to know thrazmh
* IP address of the GP-xx panel
» User Name: knockknock
» Password: whosthere

Use any Telnet client or open a Command Prompt @/inand type:
telnet 192.168.1.221 (or whatever the IP addregeuf GP-xx panel is).

Toggle the ECHO OFF and enter the username anavpessyou should see a screen similar to
this one:

& Telnet 192.168.8.221 [y ﬂﬂ

Ctr1-D — Exit
Ctrl-E — Toggle Echo

Please log in...
Uszername: knockknock

Pazzword: whosthere
e lcome knockknock

Software Uersion: 1.8.3 Built:Oct 18 28086 at 18:33:04
Panel Type: GP-16P
FPGA Uersion: BAA2

width v write uptime

telnet exit
ip props sstart
szhow dstlist slvlist

Type “"help <command>" for help on a specific command.
Type "?*" to repeat the last command.

38

Once you are logged on you need to toggle ScripuBging ON.
To toggle Script Debug ON type:

sdbg 1 <Enter>
To turn it OFF type:

sdbg 0 <Enter>

@ Telnet 192.168.8.221 ﬂﬂ

"help <command>" for help on a specific command.
"1t to repeat the last command.

SCRIPT DEBUG is OM

—» ZUM: Subroutine—handle_sw_press

SUM: connecting Source ID 11 to Dest 1.
SUM: Subroutine—handle_sw_press

SUM: connecting Source ID 112 to Dest 1.

Now when you press a button on the GP-xx panelingnimne Example interlock16.ss script, you
will see the Print statements as they are executed.

39

Appendix A

Al - Example Custom Script File — interlock16.ss
To open this file in the GP16PConfiguration Tooltde following:

1-Start the GP-16P Configuration Tool software

2- Click File-New

3- Select interlock16 as the filename and click EAV

4- The Script Wizard opens automatically — ckeKNCEL to close it.

5- SelecWView >Script Editor

6-Copy and paste everything between the //START HERd //END HERE lines directly into
the bottom window of the Script Editor.

7- Save amterlock16.ss

//****START H E R E*********************************** kkkkkkhkkkkkkkkkkk

//*** kkkkkkkkkkkkkkkhkkkkhkhkkkkkkhhkkhkkk

/I Custom Interlock switch code —file interlockl6-semail paulpicard@wheatstone.com with any
guestions.

constant: ON = 1

constant: OFF =0

variable: led_ num =1

variable: switch =0

variable: source =0

variable: current_switch =0

variable: last_led =0

/Iaa * *% * * *kk * *% * *% * *kkk * *% * *

/I Map the destination you want to switch sourcekere

/Iaa * *% * * *kk * *% * *% * *kkk * *% * *

constant: dest_ a =1 // select destination id#iner for this 16x1 line selector

/Iaa * *% * * *kk * *% * *% * *kkk * *% * *

/Imap source signal id's to buttons 1 through 16
//*** kkkkkkkkhkhkkkhkkkhhkkkhkkkhhkkkhkhix
constant: sourcel = 11 //change the 11 to anoitgrcS signal id# as required- repeat for the rest
constant: source2 = 12

constant: source3 = 13

constant: sourced4 = 14

constant: source5 = 15

constant: source6 = 16

constant: source7 = 17

constant: source8 = 18

constant: source9 = 109

constant: sourcel0 =110

constant: sourcell =111

constant: sourcel2 = 112

constant: sourcel3 = 113

constant: sourceld4 = 114

constant: sourcel5 = 115

constant: sourcel6 = 116 //change the 116 to ansthece signal id# as required

40

/Iaa * *% * *

/I Subroutines
//***********************

subroutine: handle_sw_press //This subroutine duegt of the work.
/It receives switch#dasource info from the button
/lpress actions.

{
print ("Subroutine-handle_sw_press")
switch = $1
source = $2

btn_led (last_led, OFF)

call store_switch (switch)

connect (dest_a, source) //dest_a is a fixstirdgion defined above as a constant
btn_led (switch, ON)

print ("connecting Source ID " # source # " tedD" # dest_a #".")

subroutine: store_switch

{

current_switch = $1
last_led = $1

//******************************

// Button press section

// * *% * *kkk * *

action: BTN_1_PRESS

{

switch =1

source = sourcel

call handle_sw_press(switch, source)

}

action: BTN_2 PRESS
{

switch = 2

source = source2
call handle_sw_press(switch, source)

}

action: BTN_3 PRESS
{

switch = 3

source = source3
call handle_sw_press(switch, source)

}

41

action: BTN_4_ PRESS

{

switch = 4

source = source4

call handle_sw_press(switch, source)

}

action: BTN_5 PRESS

{

switch=5

source = sourceb

call handle_sw_press(switch, source)

}

action: BTN_6_PRESS
{

switch =6
source = source6
call handle_sw_press(switch, source)

}

action: BTN_7_PRESS

{

switch =7

source = source?

call handle_sw_press(switch, source)

}

action: BTN_8 PRESS

{

switch = 8

source = source8

call handle_sw_press(switch, source)

}

action: BTN_9 PRESS
{

switch =9
source = source9
call handle_sw_press(switch, source)

}

action: BTN_10 PRESS

switch = 10
source = sourcel0
call handle_sw_press(switch, source)

}

action: BTN_11 PRESS

switch = 11
source = sourcell
call handle_sw_press(switch, source)

}

action: BTN_12 PRESS

{

switch = 12

source = sourcel?

call handle_sw_press(switch, source)

}

action: BTN_13 PRESS

switch = 13
source = sourcel3
call handle_sw_press(switch, source)

}

action: BTN_14 PRESS

switch = 14
source = sourcel4d
call handle_sw_press(switch, source)

}

action: BTN_15 PRESS
{

switch = 15

source = sourcel5
call handle_sw_press(switch, source)

}

action: BTN_16 PRESS
{

switch = 16

source = sourcel6
call handle_sw_press(switch, source)

}

//****E N D H E R E kkkkkkkkkkkkkkkkkkkkkhkkhkkkhkkkhkkkkkkkkhkk

43

kkkkkkhkkkkkkkkkkk

